学术报告----Controlled polymerizaiton of hyperbranched polymers and their biomedical applications

发布时间:2018-06-01访问量:143

报告时间: 65日下午2:30

报告地点: 纺织学院3004

报告人及简介: Wenxin Wang is a Professor in skin research and wound healing at the Charles Institute of Dermatology, School of Medicine, also Adjunct Professor at School of Mechanical and Materials Engineering, University College Dublin (UCD) and a Principle Investigator of Science Foundation Ireland (SFI). Prof Wang’s scientific interests and expertise covers the development of polymer therapeutics and gene therapy for the wound healing, extending from dendritic polymers to smart polymers for a wide range of applications particularly for tissue engineering (e.g. hydrogels for stem cell encapsulation and delivery), drug delivery, 3D bio-printing. His scientific contributions and achievements include 4 book chapters, 14 held patents, 3 filed invention disclosure forms (IDFs), and 167 peer-reviewed scientific publications including Nature Communications, Science Advances, JACS, Chemical Review, Progress in Polymer Science, Angewandte Chemie, and Advanced Materials. Professor Wang has been invited over 70 times as a keynote or invited speaker at international conferences and universities. As the founder, Prof Wang has launched two spin-out companies: Vornia Ltd (purchased by Ashland – one of Fortune 500 USA companies) and Blafar Ltd. Currently, Prof Wang is the Chairman of Director Board and CSO of Blafar Ltd. Prof Wang won “The Science Foundation Ireland (SFI) Young Scientist Prize in Regenerative Medicine” in 2010 at TERMIS-EU conference. Prof Wang has been selected as an expert reviewer and panel member by 17 research councils and funding. He has hosted 19 conferences as a member of the advisory board, organizer, chair or convener around the world.

报告大纲: 70多年前由高分子科学界的先驱P. Flory(高分子科学的奠基人之一)和W. Stockmayer所定义的经典凝胶理论(F-S理论)1一直被视为高分子领域的经典理论之一。该理论认为多烯烃基单体的聚合会直接导致不可溶的交联聚合物网络的形成,这一预测也确实被无数次的实验观察所证实,故多烯烃基单体的聚合一直被视为链式增长聚合中不可控制的一类反应。然而,随着近三十年间可控活性自由基聚合理论和技术的发展(包括原子转移自由基聚合-ATRP、可逆加成断裂链转移聚合-RAFT等),一些与F-S理论预测相悖的实验数据接连被报道出来。尤其是近年来,我们通过将动力学控制策略应用于多种不同的可控活性聚合方法中,成功地将多烯烃基单体的可控聚合变为了可能,并得到了前所未有的两种迥异的新型高分子结构 - 高度内环化的单链高分子结构2和由极短初级链加成得到的超支化结构3。这一研究成果极大地突破了F-S理论的限制并刷新了高分子科学领域对多乙烯基单体聚合的传统认知。

目前,在前期的工作基础上,我们已成功通过控制动力学链长,调节链增长环境从而改变高分子链增长方式的策略,利用廉价易得的多烯烃单体设计开发了三维结构可以得到精确控制的多种新型单链超内环化和超支化聚合物4-6,并研究了这些新颖聚合物材料在皮肤伤口愈合、皮肤疑难病、基因治疗、智能组织工程和药物运载等方面的应用。

  

 

返回原图
/