学术报告----丝素蛋白软物质的分级网络结构
发布时间: 2016-12-13

Hierarchical Network Structures in Silk Fibroin Soft Materials

丝素蛋白软物质的分级网络结构

报告时间: 12.14 9:00-12:00

报告地点: 纺织学院楼3004会议室

报告人及简介: 刘向阳教授毕业于山东大学化学系,获得理学学士学位;并于山大晶体材料研究所,获得固体物理硕士学位。1989,到荷兰莱梅享大学攻读博士学位。于1993,获得博士学位,并被授于cum laude称号。在从事两年多博士后研究之后,刘向阳教授于1996 年,被Unilever, Port Sunlight实验室聘为永久研究员。刘向阳教授于1999 年加入新加坡国立大学物理系,为物理系及化学系的终生正教授。

刘向阳教授于20127月以国家“千人计划”特聘教授加入厦门大学。刘向阳教授为教育部长江学者讲座教授,厦门大学物理科学与技术学院副院长,生物仿生及软物质研究院院长,国家教育部/外专局“111”计划-柔性物质研究及应用创新引智基地负责人、福建省柔性功能材料重点实验室主任,厦门市柔性导电材料与器件工程技术研究中心主任。

刘向阳教授在生物物理、仿生材料、纳米科技、晶体生长、表面与胶体科学等方面有超过25年在学术界及工业界工作经验。以第一作者及通讯作者为计,刘向阳教授已在如 Nature, J. Am. Chem. Soc., Adv. Mat. Angew. Chem. Int. Ed.Phys. Rev. Lett.等国际著名顶级科技杂志发表了>250篇论文与不同专著重要章节,由著名出版社如Springer, Wiley-VCH等特邀编写4部专著。受Wiley-VCH出版社邀请,先后于2015年和2016年,刘向阳教授组织Wiley旗下Small杂志“软物质与界面”专刊2期,Adv. Func. Mat.杂志“软物质功能化”专刊1期。刘向阳教授共组织国际国内会议30余次,国际国内特邀学术报告110余次,包括著名的高登研究论坛等。并受国家基金委、中科院委托,与科技出版社合作,集全球华人精英之力,主编出版《软物质丛书》(~30卷)。2015年开始主导国家基金委、中科院“十三五”长期发展战略软凝聚态物理部分的编写。

      报告大纲: In order to control the macroscopic properties, the knowledge on the structural characteristics in relationship to the properties of supramolecular materials becomes then very crucial. Crystal networks, as one of key mesoscopic structures, have received increasing attention. I will in this talk present a systematic and comprehensive overview on the structural characteristics and the formation mechanism of crystal networks. In this regard, the hierarchy of crystal network structures: crystal network and domain network, turns out to be the basic features of crystal networks. It can be decribed by the four factors, the topology, correlation length, symmetry/ordering, and strength of association of crystal networks, which determine the macroscopic behavior of mesoscopic materials. It follows that the basic mechanisms of crystal nucleation and growth were reviewed. These are further extended to the formation of multi levels of crystal networks. Four major pathways of crystal network construction are discussed in detail. Based on the correlation between crystal networks and the macroscopic properties/performance, the engineering strategy of mesoscopic materials was reviewed as well. According to the principle of materials engineering triangle, the knowledge on the formation mechanisms of crystal networks was converted to the engineering stractegy of mesoscopic materials. This can be implemented by introducing various stimuli, ie. additives, sonication, seeding, thermodynamic driving force etc. To demonstrate the principle of crystal networks in the decription and predicyion of the macroscopic performance of mesoscopic materials, the correlation between the mesoscopic structure and the performance of biominerals, molecular gels were overviewed. Furthermore, the much larger breaking stress and strain of spider silk fibers than silkworm silk fibers were explained and predicted within the framework of hierarchical breaking mechanism, mainly based on the factors of ordering, correlation length, the hierarchical structure and the strength of nano-fibrils. In general, the comprehensive understandings on crystal networks will guide the research and engineering of mesoscopic materials in the long term.